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B field ~ 5/3 T

R = 3m

L = ½ π R = 4.71 m

p = 0.3 B R = 1.5 GeV/c

tπ = L/βπc = 15.77 ns 

tΚ = L/βΚc = 16.53 ns 

∆tπK = 0.76 ns

Experiment basics

βπ = p/√p2+mπ
2 = 0.9957 

βΚ = p/√p2+mΚ
2 = 0.9496

Particle Identification by time-of-flight (TOF) requires
Measurements with accuracies of ~ 0.1 ns
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Measure the Flight Time between two 
Scintillators
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Propagation velocities

c = 30 cm/ns

vscint = c/n = 20 cm/ns

veff = 16 cm/ns

vpmt = 0.6 cm/ns

vcable = 20 cm/ns

∆t ~ 0.1 ns
∆x ~ 3 cm
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TOF scintillators stacked for shipment
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CLAS detector open for repairs
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CLAS detector with FC pulled apart
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Start counter assembly
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Scintillator types

Organic

Liquid
Economical
messy

Solid
Fast decay time
long attenuation length
Emission spectra

Inorganic

Anthracene
Unused standard

NaI, CsI
Excellent γ resolution
Slow decay time

BGO
High density, compact
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Photocathode spectral response
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Scintillator thickness

Minimizing material vs. signal/background

CLAS TOF: 5 cm thick
Penetrating particles (e.g. pions) loose 10 MeV

Start counter: 0.3 cm thick
Penetrating particles loose 0.6 MeV
Photons, e+e− backgrounds ~ 1MeV contribute 
substantially to count rate

Thresholds may eliminate these in TOF
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Light guides

Goals
Match (rectangular) scintillator to (circular) pmt
Optimize light collection for applications

Types
Plastic
Air
None
“Winston” shapes
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Reflective/Refractive boundaries 

acrylicScintillator
n = 1.58

PMT glass
n = 1.5
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Reflective/Refractive boundaries

Air with
reflective
boundary

Scintillator
n = 1.58

PMT glass
n = 1.5
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Reflective/Refractive boundaries

Scintillator
n = 1.58

PMT glass
n = 1.5

air
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Reflective/Refractive boundaries

acrylicScintillator
n = 1.58

PMT glass
n = 1.5

Large-angle 
ray lost

Acceptance of incident rays at fixed angle depends 
on position at the exit face of the scintillator
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Winston Cones  - geometry
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Winston Cone - acceptance
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Photomultiplier tube, sensitive light meter 
Gain ~ 106 - 107

Electrodes

Photocathode Dynodes

Anode

γ
e−

56 AVP pmt
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Window Transmittance
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Voltage dividers

Equal voltage steps
Maximum gain

Progressive, higher voltage near anode
Excellent linearity, limited gain

Time optimized, higher voltage at cathode
Good gain, fast response

Zeners
Stabilize voltages independent of gain

Decoupling capacitors
“reservoirs” of charge during pulsed operation
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Voltage Dividers
d1 d2 d3 dNdN-1dN-2

ak
g

4 2.5 1 1 1 1 1 1 1 1 1 1

16.5

RL

+HV−HV

Equal Steps – Max Gain

4 2.5 1 1 1 1 1 1 1.4 1.6 3 2.5

21

RL

Intermediate

6 2.5 1 1.25 1.5 1.5 1.75 2.5 3.5 4.5 8 10

44

RL

Progressive

Timing Linearity
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Voltage
Divider

Active components
to minimize changes
to timing  and rate 
capability with HV

Capacitors for increased
linearity in 
pulsed applications
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High voltage

Positive (cathode at ground)
low noise, capacitative coupling

Negative
Anode at ground (no HV on signal)

No (high) voltage
Cockcroft-Walton bases
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Effect of magnetic field on pmt
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Housing
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Compact UNH divider design
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Electrostatics near cathode at −HV

Stable performance with negative high voltage is achieved by
Eliminating potential gradients in the vicinity of the photocathode.
The electrostatic shielding and the can of the crystal are both
Maintained at cathode potential by this arrangement.
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Dark counts

Solid     : Sea level

Dashed: 30 m underground

Thermal 
Noise

After-pulsing and
Glass radioactivity

Cosmic rays
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Signal for passing tracks
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Single photoelectron signal
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Pulse distortion in cable
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Electronics

trigger

dynode

Measure time
Measure pulse height

anode
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Time-walk corrections
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Formalism: Measure time and position
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From single-photoelectron timing to 
counter resolution
The uncertainty in determining the passage of a particle
through a scintillator has a statistical component, depending
on the number of photoelectrons Npe that create the pulse.
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Note: Parameters for CLAS
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Average time resolution

CLAS in Hall B
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Formalism: Measure energy loss

PL PR

TL TR
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Energy deposited in scintillator
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Uncertainties
Timing

Assume that one pmt measures a time with uncertainty δt

Mass Resolution
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Integral magnetic shield
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Example: Kaon mass resolution by TOF
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Velocity vs. momentum

π+

K+

p
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Summary

Scintillator counters have a few simple 
components

Systems are built out of these counters
Fast response allows for accurate timing

The time resolution required for particle 
identification is the result of the time 
response of individual components         
scaled by √Npe
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Magnetic fields
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